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Abstract

An investigation of laminar and fully developed mixed convection in a vertical rectangular duct is presented. The
analysis refers to thermal boundary conditions such that at least one of the four duct walls is kept isothermal. The
evaluation of the velocity field and of the temperature field is performed analytically. The limiting case of free con-
vection, i.e. the case of pure buoyancy-driven flow, is discussed. Special attention is devoted to the following sets of
thermal boundary conditions: (A) two facing duct walls are kept isothermal with different temperatures and the others
are kept insulated; (B) two facing duct walls have a uniform wall heat flux and the others are kept isothermal with the
same temperature. In both cases, the conditions for the onset of flow reversal are obtained. The friction factor is
evaluated. It is shown that this parameter depends only on the duct aspect ratio in case (A), while it depends also on the
ratio between the Grashof number and the Reynolds number in case (B). © 2001 Elsevier Science Ltd. All rights

reserved.
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1. Introduction

Several analyses of heat transfer in ducts with non-
circular cross section are available in the literature. In
most cases, the studies in this field are stimulated by the
need for enhancing heat transfer, for instance in the
design of compact heat exchangers or of solar collectors.
A wide literature refers to the simplest non-circular
ducts, i.e., parallel-plate and rectangular ducts. Hartnett
and Kostic [1] provide a very deep review of the most
important results on heat transfer in rectangular ducts,
both for forced and for mixed convection flows. One of
the first theoretical analyses of laminar convection in
rectangular ducts can be found in Han [2]. In this paper,
one can find an analytical solution of momentum and
energy balance equations in the case of fully developed
mixed convection in a rectangular duct with HI1
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boundary conditions, namely an axially uniform wall
heat flux and a peripherally uniform wall temperature.
Igbal et al. [3] present an analysis of combined forced
and free flow in vertical ducts such that the shape of the
cross section is a regular polygon. This study includes
square ducts and refers to H1 and H2 boundary con-
ditions. The latter boundary condition applies to a duct
with both axially and peripherally uniform wall heat
flux. A numerical solution for fully developed mixed
convection in an inclined rectangular duct is provided
for H1 boundary conditions in a paper by Ou et al. [4].
More recently, Aparecido and Cotta [5] develop an in-
vestigation of laminar forced convection in the thermal
entrance region of a rectangular duct with uniform wall
temperature, by employing a generalized integral trans-
form technique. Nonino and Del Giudice [6] provide a
numerical study of laminar mixed convection in the
entrance region of a horizontal rectangular duct with an
arbitrary combination of uniformly heated and adia-
batic sides of the rectangle. Gao and Hartnett [7,8]
present analyses of fully developed forced convection in
a rectangular duct which refer either to laminar flow of a
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Nomenclature

a,b length of the rectangle sides

Ci(0),Cy(0) functions defined by Egs. (29) and (58),
respectively

D 2ab/(a + b), hydraulic diameter

f Fanning friction factor, defined in
Eq. (16)

F(x,y) arbitrary function

g magnitude of the gravitational
acceleration

Gr Grashof number, defined in Eq. (8)

(Gr/Re),,, threshold value of Gr/Re for the onset

of flow reversal

k thermal conductivity

n,m positive integers

M arbitrary real number employed in
Eqgs. (24) and (56)

p pressure

P difference between the pressure and the
hydrostatic pressure

qw wall heat flux

Re Reynolds number, defined in Eq. (8)

t dimensionless temperature defined in
Eq. (8)

T temperature

Ty mean temperature in a duct section

n, T wall temperatures

u dimensionless velocity defined in Eq. (8)

u* dimensionless velocity defined in
Eq. (31)

u* average value of u*(x,y) in the region
{0<x<1,0<y<a/2}

U Z-component of the fluid velocity

Uy mean fluid velocity in a duct section

X,y dimensionless coordinates defined in
Eq. (8)

X, Y,z rectangular coordinates

w arbitrary real variable employed in
Eqgs. (24) and (25)

o thermal diffusivity

p volumetric coefficient of thermal
expansion

AT reference temperature difference

n dimensionless parameter defined in
Eq. (8)

0 dimensionless temperature, ¢t — #

A dimensionless parameter defined in
Eq. (8)

I dynamic viscosity

v kinematic viscosity, u/p,

P mass density

Po mass density for 7 = T

a aspect ratio defined in Eq. (8)

Tw.m average wall shear stress

Superscripts

~ finite Fourier sine transform defined by
Eq. (48)

~ double finite Fourier sine transform
defined by Eq. (18)

power-law fluid [7] or to slug flow [8]. Both these papers
investigate the eight fundamental combinations of uni-
formly heated and adiabatic sides of the rectangle. By
means of an implicit finite difference scheme, Chung et al.
[9] investigate thermally-developing forced convection in
a rectangular duct with laminar flow and H2 boundary
conditions. Spiga and Morini [10] yield an extension of
the treatment proposed by Gao and Hartnett [8] in order
to determine analytically the developing Nusselt number
and the thermal entrance length. By employing the
vorticity—velocity formulation, Lee [11] presents a nu-
merical investigation of buoyancy-induced heat and
mass transfer in a vertical rectangular duct such that
three sides are adiabatic, while the fourth is either iso-
thermal or isoflux. A theoretical investigation of buoy-
ancy induced flow in the fully developed region of a
vertical rectangular duct with two isothermal walls and
two adiabatic walls has been performed by McBain [12].
In a recent paper [13], the effect of viscous dissipation on
slug flow heat transfer in the thermal entrance region of
rectangular ducts has been analysed with reference to

the eight fundamental H2 boundary conditions consid-
ered by Gao and Hartnett [7,8].

As is well known, the parallel-plate channel is a
limiting case of a rectangular duct with a very small
aspect ratio. Several investigations of the fully developed
mixed convection in vertical or inclined parallel-plate
channels either with uniform and unequal wall temper-
atures [14-17] or with uniform wall heat fluxes [15,16]
are available in the literature. These theoretical studies
are mainly concerned with the modifications of the ve-
locity profiles induced by the buoyancy effect, with a
special interest for the conditions which lead to flow
reversal. Indeed, flow reversal occurs when the buoyancy
force is so strong that there exists a domain within the
duct where the fluid velocity has a direction opposite to
the mean fluid flow. As a consequence, in the fully de-
veloped region, the conditions for flow reversal are de-
termined when one obtains the threshold value of the
ratio between the Grashof number Gr and the Reynolds
number Re beyond which the phenomenon of flow re-
versal takes place.
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The aim of the present paper is to improve the ana-
lyses performed in the case of vertical parallel-plate
channels [14-16], by investigating the fully developed
mixed convection in vertical rectangular ducts. More
precisely, the temperature and velocity fields as well as
the friction factor will be evaluated analytically for a
given value of Gr/Re, with reference to thermal
boundary conditions such that at least one of the four
sides of the duct is kept isothermal. Then, the conditions
for the onset of flow reversal will be determined. Special
attention will be devoted to a pair of sample cases: (A)
two facing sides are isothermal with different tempera-
tures and the others are insulated; (B) two facing sides
have a uniform wall heat flux and the others are iso-
thermal with the same temperature. Finally, the limiting
case of pure buoyancy-driven flow, i.e., free convection,
will be investigated.

2. Governing equations

In this section, the set of balance equations governing
the combined forced and free flow in a vertical rectan-
gular duct is written in a dimensionless form.

Let us consider the steady laminar flow of a New-
tonian fluid in a vertical rectangular duct with infinite
length. Moreover, let us assume that the Boussinesq
approximation holds and that the viscous dissipation as
well as the temperature changes of the thermal con-
ductivity k£ and of the dynamic viscosity p can be ne-
glected. A drawing of the system examined and of the
coordinate axes is reported in Fig. 1. Let us assume that
the flow is parallel, i.e. that the only non-vanishing
component of the velocity field is the Z-component, U.
Since the Boussinesq approximation implies that the

3

Fig. 1. Drawing of the duct and of the coordinate axes.

velocity field is solenoidal, it is easily inferred that U
cannot depend on Z. As a consequence, the momentum
balance equations along the directions X, Y and Z yield

oP oP

a:(): §:07 (1)
ﬂ(T—T)—a—P+ az—U+62—U =0 )
Po8 0 oz H e or2 — Y

where P=p+ p,gZ is the difference between the
pressure and the hydrostatic pressure. The reference
temperature 7, which appears in Eq. (2), should ensure
the best conditions for the validity of the linear relation
between the local mass density and the local tempera-
ture

p = po[l = B(T = To)]. 3)

The usual structure of the Boussinesq approximation
can be maintained even if the reference temperature 7j is
varying in the streamwise direction. Indeed, in that case,
one neglects the change of p, in the streamwise direction.
The latter assumption is Morton’s hypothesis [18,19]
and is widely employed in the literature, whenever the
thermal boundary conditions are such that a net heating
or cooling of the fluid occurs.

As is discussed in [20], the requirement that 7; must
yield the smallest errors in the use of Eq. (3) is fulfilled if
the reference temperature 7, coincides with the mean
temperature in a duct section, i.e.

1 a b
dx [ arr. )

Th=—
ab Jo Jo

Eq. (1) implies that P depends only on Z. If Eq. (2) is
derived with respect to Z, one obtains

or dr, 1 d°P

—=—4 —- (5)
0Z dZ = pygp dz?

By employing Eq. (4), Eq. (5) allows one to conclude
that dP/dZ is a constant and that 07 /0Z coincides with
d7Ty/dZ. As a consequence, the energy balance equation
can be expressed as

dTO_a(azT 3T dZTo)

Viz =\ tarrtaz

(6)
Moreover, one can easily infer that 07/0Z depends
neither on X nor on YV, i.e., the quantity 07 /0Z is uni-
form in a duct section. Therefore, if at least one of the
duct walls is isothermal, then 07'/0Z vanishes identically.
In the following, it will be assumed that one or more
duct walls are kept isothermal with a temperature 7}, so
that 07/0Z = 0. Under this hypothesis, Eq. (6) can be
rewritten as

*T T
T )
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The balance equations can be expressed in a dimen-
sionless form by introducing the quantities:

tinTO U X Y
- AT ) uiU()’ x*a7 y*a7
b UsD ATD?
og=-, Re:L, Gr:gﬁ—27
a v v
I — T, 2 dp
n="2 =T (®)

In Eq. (8), D =2ab/(a+ b) is the hydraulic diameter
and the mean velocity Uj is defined as

1 a b
%_Eﬁd{AuU, 9)

while AT is a reference temperature difference. The latter
quantity can be properly fixed once the thermal
boundary conditions have been chosen.

On account of Egs. (2), (7) and (8), the momentum
balance equation and the energy balance equation can
be expressed as

’u  du (1+0)* Gr

ot 0%

420, 11
ox? + 0y? 0 (11)

Additional constraints fulfilled by the functions #(x,y)
and u(x,y) are provided by Egs. (4) and (9), namely

/Oldx/o(rdytzo7 (12)
/Oldx/ogdyu:o: (13)

The velocity field fulfils no-slip boundary conditions at
the duct walls. As a consequence, the boundary con-
ditions satisfied by the dimensionless velocity field can
be expressed as

u(x,0) = u(x,0) =u(0,y) =u(l,y) =0. (14)

The average wall shear stress with respect to the
perimeter of the duct is defined as

u /*aU /*aU

Tym = —| dr- | =
T 2a+b) [ o X |y, 0 0X
QU QU

o e

On account of Eq. (15), the Fanning friction factor is
given by

dy

X=a

dﬂ. (15)

Y=b

27y 1 20 " Ou 7 Qu
_Ltwm 1 htad d _/ o d
4 poUs  Re (1 +q) {/0 x|, g o Ox| g
1 1
—|—/ Elu dx—/ % dx|. (16)
o Oy y=0 o Oy V=0

If one performs a double integration of both sides of Eq.
(10) with respect to x in the interval 0 <x < 1 and with
respect to y in the interval 0 <y < g, by employing Egs.
(12) and (16), one obtains the following relation between
the parameters f and 4

2462
fRe—(1+O_)2A. (17)

The solution of Egs. (10)—(14) together with a suitable
set of thermal boundary conditions yields the functions
u(x,y) and #(x, ) as well as the parameters /4 and 1. More
precisely, Egs. (10)—(14) show that one can first deter-
mine #(x,y) by solving Eq. (11) with given thermal
boundary conditions. Then, Eq. (12) can be employed to
obtain 5. By substituting #(x,y) in Eq. (10) and by
utilizing the boundary conditions expressed by Eq. (14),
one determines the function u(x,y). Finally, the con-
straint given by Eq. (13) allows one to find out the
parameter A.

It should be pointed out that, for every choice of the
thermal boundary conditions, Eqgs. (11) and (12) ensure
that the dimensionless temperature field #(x,y) is inde-
pendent of the dimensionless velocity field u(x,y). In
particular, the evaluation of #(x,y) can be performed
through the solution of a stationary and two-dimen-
sional heat conduction problem.

3. Evaluation of the velocity field

In this section, the dimensionless velocity field u(x, )
is evaluated under the assumption that the dimension-
less temperature field #(x,y) has been previously ob-
tained.

Let us assume that the first steps of the solution
procedure of Egs. (10)—(14) have been performed, so
that #(x,y) and 5 have been determined. Then, the di-
mensionless velocity field u(x,y) can be obtained by
employing the finite Fourier transforms method. In
particular, the double finite Fourier sine transform of an
arbitrary function F(x,y) in the domain 0<x<1,
0< y< o is defined as [21]

F(n,m) = /01 dx/oady F(x,y)sin(nnx) sin (m—ny>,

(18)

where n and m are positive integers. On account of the
properties of the finite Fourier transforms widely dis-
cussed in [21] and of the boundary conditions given by
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Eq. (14), Eq. (10) can be rewritten as an algebraic
equation, namely

2N+ (1 2 Grw
nz(nz-i-%)uz( +2) el

462 Re
S = (=Dt = (=1D"]. (19)

., C
+ 4
nmn
Eq. (19) allows the evaluation of Z(n, m), one obtains
. 261 = (=1)'][1 = (=1)"]
u(n, m) = nmn*(o?n? + m?)

Gr(1+ 0)27(n,m)
Re 472 (o2n* + m?)’

(20)

Once the transform u(n,m) has been determined, the
dimensionless velocity u(x,y) can be evaluated by em-
ploying the inversion formula [21]

D=3 Fm)

m=1 n=

) sin(nmx) sin (@) . (21)
o

By substituting Eq. (20) in Eq. (21), one is led to the
expression

u(x,y) = 167; A
o sin[(2n — 1) 7x]
;;m—l )2m—1)[a>(2n—1)* + (2m—1)*]
X sin {( m;l)ny] +(1;;:)
Gr Z Z 02115;1—0— 5 sin(nmx)sin (@)

(22)

In the limit Gr/Re — 0, the velocity u(x, y) tends to co-
incide with the first term on the right-hand side of Eq.
(22), namely

1662/

u(x, J/)|( Gr/Re)=0 =~ 4

> sin[(2n — 1)mx]
X; ~ (20— 1)2m — 1)[c>(2n — 1)* + 2m — 1)7]
X sin {@} (23)

The dimensionless velocity distribution expressed by
Eq. (23) occurs in the absence of buoyancy forces, i.e.,
in the case of forced convection. The expression of the
dimensionless velocity field given by Eq. (23) is equal
to the one obtained in the case of isothermal flow by
Spiga and Morini [22]. On the other hand, by em-
ploying Fourier series expansions in the interval
0<w<1, the following mathematical identities are
easily proved:

Lz{l _ cosh[Mn(w —1/2)] }

4 cosh[Mn/2]
_ - sin[(2n — 1)mw] ”
2 e -1 Y

(25)

As a consequence of Egs. (24) and (25), the double in-
finite sum on the right-hand side of Eq. (23) can be
written as a single infinite sum either as

4 &

-3
n n=1

cosh[(2n — )n(y — /2)]
x {1 T cosh[(2n — 1)zo /2] }
sin[(2n — )mx] A
W = Ex(l —X)
AL~ cosh[(2n — D)n(y — 0/2)]
™ 4= (2n — 1)’ cosh[(2n — 1)na/2)]
x sin[(2n — 1)mx], (26a)

u(x,y) |(G/‘/Re)~»0

or as

u(x,y) |(Gr/Re)

402) -
Z(n—l

cosh[(x — 1/2;(2n —1)n/a]
x {1 T cosh[(2n — 1)/ (20)] }

X sin w = gy(o -y)
" _40*A >~ cosh[(x —1/2)(2n — 1)n/q]
7_[3 Z (2n - 1)’ cosh[(2n — 1)n/(20))]
x sin w . (26b)

The expression which appears in Eq. (26a) agrees with
the classical mathematical form of the dimensionless
velocity for fully developed isothermal flow in a rec-
tangular duct available, for instance, in [23]. Although
Spiga and Morini [22] emphasize the very fast conver-
gence of the double series expression given by Eq. (23), it
is quite obvious that both the single series expression
which appears in Eq. (26a) and that which appears in
Eq. (26b) converge faster and, as a consequence, are
preferable.

In [22], a table with values in the limit Gr/Re — 0 of
the ratio u(x,y)/Z at different positions in the duct cross-
section is reported for ¢ = 1. A comparison between
these values and those evaluated by employing Eq. (26a)
is performed in Table 1. This table shows that the rela-
tive discrepancy ranges from 0.29% to 0.64%. Since
analytical solutions are involved, these relative discrep-
ancies are not so small. This circumstance is somewhat
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Table 1

Values of u(x,y)/A for Gr/Re — 0 and ¢ =1
(x,») u(x,y)/2 evalu- u(x,y)/2

ated by Eq. (26a)  Ref. [22]

0.5, 0.5) 0.07367135 -
(0.5, 0.75) (0.75, 0.5) 0.05733491 0.05750080
(0.6, 0.6) 0.06874431 -
(0.6, 0.75) (0.75, 0.6) 0.05549793 0.05566930
(0.75, 0.75) 0.04528616 -
(0.85, 0.75) (0.75, 0.85)  0.03236660 0.03252332
(0.85, 0.85) 0.02360474 -
(0.9, 0.75) (0.75, 0.9) 0.02356374 0.02371376
(0.9, 0.9) 0.01307145

unexpected, since we have just shown that the expression
of the dimensionless velocity distribution found by Spiga
and Morini [22] is mathematically coincident with the
right-hand side of Eq. (26a). Probably, Spiga and Mo-
rini [22] have employed a truncated double-series ex-
pression of the velocity field with an insufficient number
of terms to ensure a satisfactory convergence.

On account of Egs. (26b), Eq. (22) can be rewritten as

u(x,) = 5(6 )
40%) i cosh(x — 1/2)(2n — 1)/o]

4~ (2n— 1)’ cosh[(2n — 1)n/(26))
X sin {(Zn ;l)ny] + (1;;)
Z Z 0’2}12 + 5 sin(nmx) sin (?)

(27)

The parameter A can be easily evaluated by substituting
Eq. (27) into Eq. (13). Then, on account of Eq. (17),
one obtains the following expression of the friction
factor fRe:

o
TR = o

4(l+u) G T(2n—12m— )
- o Em 1 Zn L (2n—1)(2m—1)[2(2n—1)>+(2m— 1)]

1-— 1920 oo tanh[(2n— 1)7[/(25]
E n=1 (2n— ])

X

(28)

By employing the definition of double finite Fourier sine
transform expressed by Eq. (18), the following statement
is easily proved. If the thermal boundary conditions lead
to a dimensionless temperature distribution #(x, y) which
is either antisymmetric with respect to the midplane
x = 1/2 or antisymmetric with respect to the midplane
y=0/2, then ¢(2n—1,2m —1) =0 for every pair of
positive integers (n,m). Obviously, on account of

Eq. (28), the latter condition implies that the friction
factor is not affected by buoyancy, i.e., that fRe does not
depend on Gr/Re.

As a consequence of Eq. (28), in the special case of
isothermal flow, i.e., in the limit Gr/Re — 0, the friction
factor is given by

24
fRe\(Gr/Re)w 1+ 0_)2
1926 &K tanh[(2n — 1)7/(20)) o
X{lns; a1y }
= Ci(0). (29)

It can be easily shown that, in the limit ¢ — 0, the right-
hand side of Eq. (29) tends to 24. Indeed, in this limit,
one recovers the well-known value of fRe for isothermal
flow in a parallel-plate channel. Moreover, it is easily
verified that function C)(g) defined by Eq. (29) is such
that C(o) = Ci(1/0), for every o. This conclusion is
expected, since C;(o) yields the value of fRe for iso-
thermal fluid flow, and this quantity depends only on the
shape of the duct. Obviously, two rectangular ducts with
aspect ratios ¢ and 1/g, respectively, have the same
shape. Values of C)(o) are reported in Table 2. These
values support a fair agreement with the values of fRe
for the case Gr/Re — 0 provided in [23].

A special case is obtained when dP/dZ — 0. In this
case, Eq. (2) shows that the flow is driven only by the
buoyancy force and by the viscous force, i.e., free con-
vection occurs. On account of Egs. (8) and (17), the
above limit implies that both A — 0 and f* — 0. Strictly
speaking, this conclusion is legitimate only if, in the limit
dP/dZ — 0, the mean velocity U, does not vanish.
Otherwise, both 1 and f'would be ill-defined. Therefore,
if Uy is nonzero in the limit of free convection, its value
can be determined by employing Eq. (28), namely
through the condition

Gr
Re

7'(40'

dP/dz—0 4(1 +o)’

A S o

m=1 n=1

12n—1,2m—1) }_1
—D[e2@n—17+2m—-17]|
(30)

Since Eq. (8) yields Gr/Re = gBATD?/(vU,), Eq. (30)
allows one to evaluate the residual mean fluid velocity
Uy in the limit dP/dZ — 0. Eq. (30) is obviously mean-
ingless when the double series on the right-hand side is
zero. Indeed, if the thermal boundary conditions are
such that the double series on the right-hand side of Eq.
(30) vanishes, then the mean velocity U, tends to zero in
the limit dP/dZ — 0. As it has been pointed out above,
this circumstance occurs if #(x, y) is either antisymmetric
with respect to the midplane x = 1/2 or antisymmetric
with respect to the midplane y = ¢/2.
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o Ci(0) Cy(0) x 100 —Cy(0)/Cy(0)
0 24 —00 0
0.01 23.6763 -5.16875 458.067
0.05 22.47170 -4.84033 464.369
0.1 21.1689 —4.44158 476.607
0.2 19.0705 -3.68865 517.005
0.3 17.5121 -3.00627 582.518
0.4 16.3681 -2.40639 680.192
0.5 15.5481 -1.89191 821.818
0.6 14.9800 -1.45640 1028.56
0.7 14.6054 —-1.08949 1340.57
0.8 14.3778 -0.780656 1841.76
0.9 14.2610 -0.520724 2738.68
1.0 14.2271 -0.302051 4710.16
1.25 14.3778 0.102837 -13981.1
1.5 14.7118 0.359586 -4091.32
1.75 15.1202 0.516842 —-2925.50
2 15.5481 0.607983 -2557.32
2.25 15.9683 0.655921 —-2434.48
25 16.3681 0.676156 -2420.76
2.75 16.7424 0.678985 —2465.79
3 17.0897 0.671146 -2546.34
3.5 17.7069 0.639296 -2769.75
4 18.2328 0.599676 —-3040.44
4.5 18.6827 0.559806 -3337.36
5 19.0705 0.522442 -3650.26
10 21.1689 0.299701 -7063.33
20 22.4770 0.158532 —-14178.2
100 23.6763 0.033016 -71711.2
00 24 0 —00

Let us define

. Re

_au:

vU
gBATD?”

(31)

Then, in the limit dP/dZ — 0, Eq. (27) yields

u(x,y) =

T,

(32)

X

In the following, Egs. (27) and (28) will be employed to
investigate two special sets of thermal boundary condi-
tions. The set (A) is defined by the conditions

or
—| =0, T(x,0,2)=T,
(33)

or| _ 0, T(X,b,2)=T1,
while the set (B) is as follows:

or

6Y = —qw, T(07 Y>Z) = Tl7

or (34)
k—| =gqv, T(@VY,2)=T.

ar |, , 4 (a,Y,Z) =T,

A schematic representation of these sets of thermal
boundary conditions is reported in Fig. 2.

4. Case (A): two isothermal and two adiabatic walls

In this section, the dimensionless temperature field
t(x,y) for the set (A) of thermal boundary conditions is
evaluated. Then, the dimensionless velocity field and
the friction factor are obtained through Egs. (27) and
(28).

A convenient choice of the reference temperature
difference is, in this case, AT = T} — T». In this section,
it will be assumed that 7; > T, so that AT > 0.
Moreover, this assumption implies that Gr/Re >0
corresponds to upward mean flow (U, > 0), while
Gr/Re < 0 corresponds to downward mean flow
(Up < 0). On account of Egs. (8) and (33), the thermal
boundary conditions are expressed in the following di-
mensionless form:

ot
a = 07 t(x7 O) =1,
x=0 (35)
o =0, tx,0)=n—-1
ax — - Y ) - ;/] .
Y
9w
b g g
T, T,
(B) o Gw o a X

Fig. 2. Thermal boundary conditions.
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It can be easily verified that the solution of Eq. (11) with
the boundary condition expressed by Eq. (33) is a one-
dimensional solution which can be written as

tx,y)=n— % (36)

Substitution of Eq. (36) in Eq. (12) allows one to obtain
n=1/2. As a consequence of Eq. (18) and of Eq. (36),
one is led to the expression

;(n m) = g

(1= =D+ (=17 (37)

2nmn?

Eqgs. (28) and (37) allow one to conclude that the fric-
tion factor is not influenced by the buoyancy effect,
since Eq. (37) yields (27 — 1,2m — 1) = 0. Indeed, Eq.
(36) with n = 1/2 implies that #(x,y) is antisymmetric
with respect to the midplane y = /2. Therefore, one
obtains

fRe = Ci(0), (38)
and, on account of Eqgs. (17) and (29),

:12{1 1920 = tanh((20 — )/ (20) }1. 9)

a2 s 2n—1)

n=1

Moreover, one can conclude that the set (A) of thermal
boundary conditions is such that the mean velocity Uy
tends to 0 in the limit dP/dZ — 0. Egs. (27) and (37)
yield

) =50~

_40%h O~ cosh[(x —1/2)(2n — 1)n/d]
m ; (2n — 1)’ cosh[(2n — 1)1/ (20)]

« sin |:(2n —Gl)ny] n (1 —7:40‘)
Gr 3 & sin[(2n — 1)mx]
* Re ; ; (2n — D)m[a>(2n — 1)* + 4m?)
X sin (2’7;@). (40)

On account of Eq. (24), Eq. (40) can be rewritten as

u(x,y) = ;y(a y)

AL cosh[x—l/Z)(Zn—l)n/a}
; 2n—1)’cosh[(2n—1)n/(20)]

. [@Cn—1)my] (1406 Gr= 1
><sm{ o + 1673 Re;n3

[t b, ()

_{H(Ho—) Gr, _2)} y(o—)

3

240 Re'’ 2

40_21 =~ cosh[(x—1/2)(2n—1)n/0]
™ 4 (2n—1) cosh[(2n—1)n/(20)]

[(Zn—l)ny} (I+0)’
n(2no-ny)’ @)

1673
where the Fourier series expansion

Gr cosh[(2x fl)nn/a]i
Re n3cosh(nn/o) s

P =1 . [2nmy

- =Y L () )

X sin

in the interval 0 < y < g, has been employed. As is easily
verified, in the limit ¢ — oo and ¢ — 0, the expression of
u(x,y) given by Eq. (41) is considerably simplified. More
precisely, in this limit, the terms containing the infinite
sums tend to zero while the first term yields a non-
vanishing contribution. By employing Egs. (8), (39) and
(41), one obtains

ey, = {6+%%(1 4%)]%(1 7§) (43)

Indeed, the right-hand side of Eq. (43) coincides with the
well-known velocity profile for laminar and fully devel-
oped flow in a vertical parallel-plate channel with uni-
form and unequal wall temperatures [14,17].

As is shown in [14,17], Eq. (43) implies that, in a
parallel-plate vertical channel, flow reversal next to the
cool wall (Y = b) occurs if Gr/Re > 288. On the other
hand, at the hot wall (Y = 0), the flow reversal condition
is fulfilled when Gr/Re < —288. Indeed, the one-di-
mensional velocity profile expressed through Eq. (43) is
left invariant by the combined transformation
Y — b—Y, Gr/Re — —Gr/Re. As a consequence of this
symmetry, one can investigate the condition of flow re-
versal at the cool wall for upward mean flow and then
extend easily the result to flow reversal at the hot wall
for downward mean flow. The velocity distribution for a
rectangular duct expressed by Eq. (41) is symmetric
under the transformation x — 1 —x. Moreover, this
velocity distribution is left invariant by the combined
transformation y — ¢ —y, Gr/Re — —Gr/Re. There-
fore, one can restrict the investigation to the onset of
flow reversal next to the cool wall (y = o) with reference
to upward mean flow. In this case, an analysis of the
velocity profiles given by Eq. (41) allows one to infer
that the onset of flow reversal occurs next to the corners
(x=0,y=0)and (x =1, y = o). Indeed, on account of
Eq. (41), one can prove that the derivative du/0y van-
ishes at the point (x = 0, y = ). Moreover, the deriva-
tive 0’u/0xdy at y =0 tends to +oo for x — 0 if
Gr/Re > 86>/(1 + ¢)*, while it tends to —oo for x — 0
if Gr/Re < 826%/(1 + ). Therefore, on account of Egs.
(17) and (29), one can conclude that the threshold value
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of Gr/Re above which flow reversal occurs next to the
corners (x =0,y=o0)and (x=1,y=o0) is

(7). ~avar s o

The values of C;(o) reported in Table 2 allow one to
evaluate the threshold value (Gr/Re) ., for a given as-
pect ratio ¢.

On account of Egs. (31) and (41), in the limit
dP/dZ — 0, one obtains the following expression of

w(x,p):

rev

(1+0)
1673

n (Z”U”y ) (45)

It is easily verified that the distribution u*(x,y) is sym-
metric with respect to the line x = 1/2 and antisym-
metric with respect to the line y = /2. More precisely
u*(x,y) is positive in the region {0 <x<1,0<y
< o/2}, while it is negative in the region {0 <x
< 1l,0/2 <y<o}. The right-hand side of Eq. (45)
agrees with the expression, found by McBain [12], for
the fully developed velocity profile of free convection in
a vertical rectangular duct with two adiabatic walls and
two facing isothermal walls with different temperatures.

By employing Eqgs. (29) and (45), one can easily show
that the average value of u*(x,y) in the region
{0 <x< 1,0 <y<a/2} is given by

. 1+0)
wiey) = L0

Yo —=y)(o—2y) -

" zx: cosh[(2x — 1)nn/o] i

n3 cosh(nn/a)

n=1

2
o (+0)

L — (46)
8(2 + 0)°Cy(0/2)

On account of Eq. (46), one can easily evaluate u* by
employing the values of C|(g) reported in Table 1. One
can easily show that u* is a rapidly increasing function of
o for o < 5.0449, reaches a maximum for ¢ = 5.0449
and, for higher aspect ratios, undergoes a slow decrease.
The maximum value of #* is 5.6107 x 1073, It is easily
verified that #* — 1/768 for ¢ — 0, while &* — 1/192
for ¢ — oo.

5. Case (B): two isoflux and two isothermal walls

In this section, the dimensionless temperature field
t(x,y) for the set (B) of thermal boundary conditions is
evaluated in order to study the dimensionless velocity
field u(x, y) and the friction factor fRe obtained by Eqgs.
(27) and (28).

In this case, the reference temperature difference is
chosen as AT = aqy/k. As a consequence, a positive
value of the ratio Gr/Re means either upward mean flow
with fluid heating (¢,, > 0) or downward mean flow with
fluid cooling (¢ < 0). Obviously, the reverse applies for

negative values of the ratio Gr/Re. On account of Egs.
(8) and (34), the thermal boundary conditions are ex-
pressed in the following dimensionless form

ot

a_ = _17 t(07y) = 117

7 ly=0 (47)
0

e AR

Wl

The solution of Eq. (11) with the boundary condition
expressed by Eq. (47) is two-dimensional and can be
obtained by the use of the finite Fourier transforms. By
defining the function 0(x,y) =¢(x,y) —y# and by con-
sidering the finite Fourier sine transform with respect to
x [21]

0(n,y) = /0 dx 0(x, y) sin(nnx), (48)

Egs. (11) and (47) yield

-
. (nm)°0 =0,

~ ~ 49
| nm ' %y am

y=0 y=a

The solution of Eq. (49) is given by
~ 1 —(=1)" cosh[nr(y —a/2
Gy — L= (1) coshlm(y = 0/2)] 50

(nm)* sinh(nna/2)

Therefore, on account of the inversion formula of finite
Fourier sine transforms [21], one obtains

4 . cosh| 2n—1) v —0/2)]
1(x,) _"+n2; 2n — 1)*sinh[(2n — 1)n0/2)

x sin[(2n — 1)7x]. (51)

As a consequence of Eq. (51), the constraint expressed
by Eq. (12) allows one to obtain the following expression
of i

6 11

- - 2
ot &~ (2n —1)* 60’ (52)

}/] =
where the identity [24]
4

Z 2m 1) 96 (53)

has been employed.
By employing Egs. (18), (51) and (52), one readily
obtains the double finite Fourier sine transform of

t(x,y), namely,
~ 1 h 2
Hnm) = — {l_ ma coth(nno/2)

6m  n(cn? + m?)

x 1= (=D = (=17 (54)
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Substitution of Eq. (54) into Eq. (27) yields

(1+0) Gr
”“”_Pz%ﬂ&

y(o—y) 46> S coshl(x—1/2)(2n—1)n/a]
X{ 2 7?;(2n71)3cosh[(2n71)n/(20)]

(v —0/2)]sin[(2n — 1)7x]
cosh[(2n — 1)7a/2]

(%)

>~ cosh[(2n—1

* ; (2n—1)

_@y=a)(1+0)’
43 g2

Gr sinh[(2n — 1)n(y — 0/2)]sin[(2n — 1)mx]

“Re Z (2n—1)*sinh[(2n — 1)no /2] + (35)

where Egs. (24) and (25) as well as the Fourier series
expansion

7* tanh[Mno /2]
16Mao
coshiMn(y — 0/2)] 2y — o sinh[Mn(y — a/2)]
X{ coshMna/2] o sinh[Mno/2] }
= (2m—1)sin[(2m — 1)ny/ 0]
_; [2M2 + (2m — 1)) G6)

in the interval 0 < y < g, have been employed.
Eqgs. (28), (29) and (54) allow one to evaluate the
friction factor fRe as follows:

Gr
Re’
where function C) (o) is defined in Eq. (29) and C,(0) is
given by

Cy(0) =Ci(0)(1 + o)

X{562—3 2 Etanh[ n—1)5/(2(;)}

fRe = Ci(a) + Cy(0) (57)

14406°  37°

1
nsgz Z (2n — 1)’ sinh[(2n — 1)7o] } .

Then, the parameter A can be easily evaluated by em-
ploying Egs. (17), (29), (57) and (58). In Table 2, values
of Cy(0) are reported.

In Eq. (58), the double infinite sums have been
written as single infinite sums by utilizing Eq. (24) in-
tegrated in the interval 0 < w< 1, Eq. (56) integrated in
the interval 0 <y < o, Eq. (53) and the identity [24]

7

Z: 2w 1) = 960 (59)

An analysis of the velocity profiles given by Eq. (55)
allows one to infer that, for any choice of the aspect
ratio o, there exists an interval (Gr/Re),, , < Gr/Re <

(Gr/Re),.,, where no flow reversal occurs. One can
prove that the threshold value (Gr/Re),,, is negative
while (Gr/Re),,, is positive and that both these
threshold values depend on . For positive values of
Gr/Re slightly greater than (Gr/Re),., ,, an onset of flow
reversal occurs next to the four corners of the duct. On
the other hand, for negative values of Gr/Re slightly
smaller than (Gr/Re),.,,, an onset of flow reversal is
displayed next to the midpoints of the isoflux bound-
aries, namely the points (x =1/2, y =0) and (x1/2,
y = 0). Indeed, on account of Eqgs. (17), (55), (57) and
(58), one can prove that (Gr/Re), ., and (Gr/Re),,, , can
be expressed as '

(7).~
x {n2 -8 Z: 2n—1) Cosh[th - )/ (20)] }
x <4{n2 -8 2; 2n—1) cosh[}2n - D)n/(20)] }
x {ns - 960020:: 2n—1) sinlll[(Zn — 1)na] }

~ 50 {n —192¢ Ztanh 2”—11)715/(26)]}

-1y )
{” 73202 (2n—1) smh[(zn_l)m—] }) |

(60)

(G_) :% (61)

19207° 63
(1+0)

Re

Eq. (57) implies that, in the case of purely free convec-
tion, i.e., in the limit dP/dZ — 0, the mean velocity U,
does not vanish and that its value can be determined
through the condition

Gr __Glo) (62)
Re |4pjaz—0 Cy(0)

Moreover, Egs. (31) and (55) imply that, in the limit
dP/dZ — 0, the dimensionless velocity u*(x,y) can be
expressed as

. (1+0)’
u (va): - 243

40’ &~ cosh[(x—1/2)(2n—1)n /0]
X{ EpY (21— 1)’ cosh[(21— 1)7/(20)]

n=1

4ndo

sin [(2;1- l)ny} } L +o)?
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00

cosh[(2n—1)n(y — 0/2)]sin[(2n — 1)7x]
- ; (2n—1)* cosh[(2n— 176 /2]

2y—o0)(1+0)’

4132
>~ sinh[(2n — 1)z(y — 0/2)]sin[(2n — 1)7x]
% ; n )sib[2n— Vo O

6. Discussion of the results

In this section, some features of the solutions found
in the preceding sections for cases (A) and (B) are de-
scribed.

—
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<
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6.1. Case (A)

As a consequence of Eqs. (38) and (44), the values of
function C; (o) reported in Table 2 allow one to evaluate
both the friction factor and the threshold value of Gr/Re
for the onset of flow reversal. Therefore, these quantities
are decreasing functions of ¢ for ¢ < 1, reach a mini-
mum for ¢ = 1 and increase for ¢ > 1. This feature is
expected in the case of the friction factor, since this
quantity must be invariant under the change ¢ — 1/0.
On the other hand, this behaviour is not trivial in the
case of (Gr/Re),,,, since this quantity is influenced by the
thermal boundary conditions and the change ¢ — 1/0
does not leave invariant the thermal boundary condi-
tions. If one considers upward mean flow (Gr/Re > 0),
then one concludes that the smallest threshold value of

A
0.2

) A
A\l ==
0.81 04 06 08 1

' 2
NS

\

Fig. 3. Set (A) of thermal boundary conditions: plots of u(x,y) for Gr/Re = 200.
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Gr/Re for the onset of flow reversal occurs when the
aspect ratio is 1, i.e., for a square duct. This value is
(Gr/Re),,, = 56.9083. On account of Table 2 one infers
that, in the limit ¢ — 0, (Gr/Re),,, = 96. If one employs
the polynomial solution which holds in this limit and
which is expressed by Eq. (43), one obtains a threshold
value for the onset of flow reversal equal to 288. At first
sight, these results disagree. However, one should re-
mind that the polynomial solution given by the right-
hand side of Eq. (43) holds for a rectangular duct with a
very small aspect ratio and far from the shorter
boundary walls. On the other hand, the values of
(Gr/Re),., which can be obtained by utilizing Eq. (44)
and Table 2 refer to the onset of flow reversal at the
corner between two neighbouring walls, i.e. in a region
where the polynomial solution expressed by Eq. (43)
cannot hold even for extremely small values of o.

Fig. 3 refers to Gr/Re =200 and displays the di-
mensionless velocity distributions with reference to three
different aspect ratios: 0.5, 1 and 2. These plots illustrate
the effect of flow reversal, which occurs for all the three
choices of the aspect ratio. The onset of flow reversal for
upward mean flow is shown in Fig. 4 where the aspect
ratios 0.5 and 1 are considered. This figure refers to the
plane y = 0.90, i.e., a plane parallel to the cool wall and
very next to this boundary. Fig. 4 shows that, both for
o = 0.5 and for ¢ = 1, the flow reversal occurs in a re-

05 Gr/Re = 66

c=0.5
0.4
03 Gr/Re =120
Gr/Re = 150
u 0.2
01 Gr/Re = 200
0
o1 v
0 0.1 0.2 0.3 0.4 0.5
%% oo Gr/Re = 50
04
0.3f

0.2
Gr/Re =12
0.1f
Gr/Re = 140

0 0.1 0.2 0.3 0.4 0.5
X

Fig. 4. Set (A) of thermal boundary conditions: plots of u vs x
for y =0.9¢.

gion next to the corner between the cool wall and an
adiabatic wall and that this region becomes larger as the
ratio Gr/Re increases. Fig. 5 displays the behaviour of
the distribution u*(x, y) for purely free convection in the
cases 0 = 0.5, 0 =1 and o = 2. These plots reveal an
evident antisymmetry with respect to the plane y = ¢/2.
Moreover, they show how the average value u* of
u*(x,) in the region {0 <x < 1,0 <y < ¢/2} is an in-
creasing function of ¢. Indeed, as it has been pointed out
in section 4, #* increases with ¢ for o < 5.0449.

6.2. Case (B)

On account of Eq. (57), the quantity fRe for a given
pair (g, Gr/Re) can be evaluated by employing the values
of Ci(0) and C,(0) reported in Table 2. One can easily
verify that C, (o) is negative for ¢ < 1.1752, vanishes for
g~ 1.1752 and is positive for ¢ = 1.1752. Therefore,
one can infer that fRe is a linearly decreasing function of
Gr/Re for o <1.1752, is independent of Gr/Re for
o ~ 1.1752, is a linearly increasing function of Gr/Re for
o = 1.1752. For instance, if one considers a case of fluid
heating (qy > 0) with upward mean flow (U, > 0),
buoyancy reduces fRe when the aspect ratio is lower
than about 1.1752, does not affect the value of fRe when
the aspect ratio is equal to about 1.1752, increases fRe
when the aspect ratio is greater than about 1.1752. Table
1 reveals that the effect of buoyancy on the friction
factor is specially strong for very small aspect ratios. It
should be pointed out that, for the boundary conditions
(B), the limit ¢ — 0 is somewhat pathologic. In fact, the
isothermal walls become negligibly smaller than the
isoflux walls in this limit and, as a consequence, they
become inefficient in transferring all the heat supplied by
(received from) the isoflux walls, in order to fulfil the
requirement 07 /0Z = 0. Obviously, the solution found
in section 3 holds only if 07//0Z = 0.

Table 2 shows also that a local maximum of C,(o)
occurs in the interval 2.5 < ¢ < 3. More precisely, one
can prove that the local maximum is found for
0 =2 2.6749. In this table, the values of —C;(0)/C,(0) are
reported. On account of Eq. (62), these values yield the
quantity Gr/Re in the limit dP/dZ — 0, i.e., in the limit
of purely free convection. One can easily show that
—Cy(0)/Cy(0) is a positive increasing function of ¢ for
o < 1.1752, is singular for o ~ 1.1752, it is a negative
increasing function of ¢ for 1.1752 < o < 24161, itis a
negative decreasing function of ¢ for ¢ = 2.4161. For
instance, if one considers a case of fluid heating (¢,, > 0),
purely free convection implies an upward mean flow
(Uy > 0) for ¢ <1.1752, no mean flow (Uy =0) for
o~1.1752, a downward mean flow (U, <0) for
o 2 1.1752. Distributions of u* for purely free convec-
tion are reported in Fig. 6 with reference to the aspect
ratios ¢ = 0.5, 0 = 1 and ¢ = 2. As is shown in Fig. 6,
the qualitative features of the distribution of #* depend
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Fig. 5. Set (A) of thermal boundary conditions: plots of u*(x,y) in the limit dP/dZ — 0.

strongly on the aspect ratio. Eqs. (13), (31) and (62)
imply that, in the limit dP/dZ — 0, the mean value of u*
in a duct cross-section must be equal to —C,(0)/C(0).
Indeed, as is easily deduced by employing either Table 2
or Fig. 6, the mean value of u* is definitely positive for
¢ = 0.5 and definitely negative for ¢ = 2.

The onset of flow reversal can be predicted by em-
ploying the data reported in Table 3. If the heat
transfer process is such that Gr/Re <0, i.e., either if
Uy>0 and ¢, <0 or if Uy<0 and gy, >0, the
threshold value of |Gr/Re| for the onset of flow reversal
depends non-monotonically on the aspect ratio. In
particular, |(Gr/Re),.,,| displays a local maximum for
0~ 0.81066 and a local minimum for ¢ ~ 4.7284. On

the other hand, if the heat transfer process is such that
Gr/Re > 0, the threshold value of Gr/Re for the onset
of flow reversal increases monotonically with ¢. Illus-
trations of the onset of flow reversal are provided in
Fig. 7, which refer to a square duct (¢ = 1). Frame (a)
of this figure represents the dimensionless velocity dis-
tribution at the plane x = 0.02 for positive increasing
values of Gr/Re. The plots show that the flow reversal
arises at the corners between an isothermal wall and an
isoflux wall. For slightly greater values of Gr/Re, an
onset of flow reversal occurs also next to the midline of
the isothermal walls. The plot for Gr/Re = 700 illus-
trates an instance of flow reversal in a neighbourhood
of the whole isothermal wall x = 0. Frame (b) of Fig. 7
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Fig. 6. Set (B) of thermal boundary conditions: plots of u*(x,y) in the limit dP/dZ — 0.

represents the dimensionless velocity distribution at the
plane y = 0.02 for negative values of Gr/Re. In this
case, flow reversal arises next to the midline of the
isoflux walls.

Finally, in Fig. 8, plots of the dimensionless tem-
perature distribution and of the dimensionless velocity
distribution are reported for a square duct. While the
dimensionless temperature #(x,y) given by Eq. (51) is

independent of Gr/Re, the dimensionless velocity u(x, y)
depends on Gr/Re. In Fig. 8, two plots of u(x,y) have
been drawn for Gr/Re = 1200 and for Gr/Re = —1200,
respectively. As one should expect on account of Table
3, the plot of u(x,y) for Gr/Re = 1200 displays a flow
reversal in the neighbourhood of the isothermal walls.
On the other hand, a flow reversal next to the midline of
the isoflux walls occurs for Gr/Re = —1200.
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Table 3

Values of (Gr/Re),,, and (Gr/Re),,
o 7(Gr/Re)re\'.] (Gr/Re)rev.Z
0 0 0
0.01 5.75486 2.82365
0.05 28.7885 13.1056
0.1 58.1694 24.1172
0.2 122.894 42.0469
0.3 200.000 56.8869
0.4 284.078 70.4316
0.5 361.053 83.7783
0.6 418.140 97.6193
0.7 450.463 112.399
0.8 460.906 128.404
0.9 455.994 145.818
1.0 442.202 164.753
1.25 396.182 219.046
1.5 355.431 283.139
1.75 325.627 356.183
2 304.956 436.905
2.25 290.825 523.931
2.5 281.190 615.996
2.75 274.620 712.041
3 270.145 811.232
35 265.078 1016.67
4 262.902 1228.91
4.5 262.170 1445.98
5 262.179 1666.67
10 268.491 3966.94
20 275.457 8707.48
100 282.948 47054.2
00 00 00

7. Conclusions

An analysis of mixed convection in a vertical rect-
angular duct with, at least, one isothermal wall has
been performed with reference to the region of fully
developed flow. It has been shown that the dimen-

0.02 Gr/Re = 550

0.01
Gr/Re = 600
u o

-0.01 7/Re = 650
-0.02
Gr/Re =700
-0.03
0 0.1 0.2 0.3 0.4 05
() y
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sionless temperature distribution can be determined

independently of the dimensionless velocity field. An

analytical solution of the momentum balance equation
has been found by employing the method of finite

Fourier transforms. This solution yields the dimen-

sionless velocity distribution and the friction factor

whenever the dimensionless temperature is known. The
following general feature of this solution has been
pointed out.

o If the dimensionless temperature distribution #(x, y) is
either antisymmetric with respect to the midplane
x =1/2 or antisymmetric with respect to the mid-
plane y = ¢/2, then the friction factor is not affected
by buoyancy, i.e. the quantity fRe does not depend
on the ratio Gr/Re.

Two special cases have been investigated: (A) a duct

with two facing walls kept isothermal with different

temperatures and the others kept insulated; (B) a duct
with two facing walls with a uniform wall heat flux
and the others kept isothermal with the same temper-
ature.

The main features of the solution in case (A) are the
following.

e The friction factor is not influenced by buoyancy, i.e.,
it does not depend on the ratio Gr/Re.

e The onset of flow reversal takes place either at the
corners between the cool wall and the adiabatic walls
for upward mean flow (Gr/Re > 0) or at the corners
between the hot wall and the adiabatic walls for
downward mean flow (Gr/Re < 0).

On the other hand, the behaviour of the solution in
case (B) can be described as follows.

e The friction factor is influenced by buoyancy. More
precisely, the quantity fRe depends linearly on the
ratio Gr/Re.

e The onset of flow reversal takes place either at the
four corners of the duct in the case Gr/Re > 0 or next
to the midline of the isoflux walls in the case
Gr/Re < 0.

0.1 Gr/Re = — 600

Gr/Re = — 800

0
u
-0.1

Gr/Re =-1000
-0.2
Gr/Re =—-1200

(b) 0 0.1 0.2 x 0.3 04 0.5

Fig. 7. Set (B) of thermal boundary conditions: (a) plots of u vs y for ¢ = 1 and x = 0.02; (b) plots of u vs x for ¢ = 1 and y = 0.02.
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Fig. 8. Set (B) of thermal boundary conditions: plots of #(x,y) and u(x,y) for ¢ = 1.
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